COMMENTS

Comment on "Strength of the N-H···O=C Bonds in Formamide and N-Methylacetamide Dimers"

Jann A. Frey and Samuel Leutwyler*

Departement für Chemie und Biochemie, Universität Bern, Freiestrasse 3, CH-3012 Bern, Switzerland

Received: March 14, 2005; In Final Form: May 17, 2005

Cis-amides are common in biologically important molecules. They provide neighboring hydrogen bonding N–H donor and C=O acceptor sites, thereby significantly influencing the structures of nucleic acids, proteins, and peptides. The formamide dimer, (FA)₂, is the simplest cis-amide dimer and has therefore been widely studied experimentally and theoretically in the gas and liquid phases.^{1–5} The results obtained are essential for understanding and modeling the structures and interactions between more extended biopolymers.

Vargas et al. calculated the binding energies of five different H-bonded (FA)₂ dimers at the MP2 level of theory, using the aug-cc-pVXZ (X = D, T, and Q) basis sets and extrapolated them to the complete basis set (CBS) limit.¹ The aug-cc-pVXZ series of basis sets was designed⁶ for frozen-core MP2 calculations; i.e., the 1s electrons should not be correlated. However, Vargas et al. employed the aug-cc-pVXZ basis sets for fully correlated calculations.¹ We address several points, comparing their CBS limit binding energy of the most stable (formamide)₂ isomer with values obtained using frozen-core MP2 calculations. The binding energies D_e and the counterpoise (CP) corrected binding energies D_e^{CPC} obtained by frozen-core and fully correlated¹ calculations are compared in Table 1 and plotted in Figure 1.

First, in ref 1 only half of the necessary CP correction was applied to the aug-cc-pVDZ binding energy, giving rise to a CBS extrapolation curve with an unusual shape. The correctly calculated D_e^{CPC} , marked by a diamond in Figure 1b, is given in parentheses in Table 1 and leads to a monotonically decreasing CBS extrapolation curve, as is usually found. Second, the CBS binding energy $D_{e,CBS} = -14.35$ kcal/mol given in ref 1 corresponds to an extrapolation⁷ of the CP-uncorrected De values only. No CBS limit binding energy for the CPcorrected $D_e^{\rm CPC}$ energies was given in ref 1, which is unusual, given that both extrapolations should, in principle, lead to nearly the same value. It is also a priori unclear why the uncorrected and not the corrected binding energies should be extrapolated. We calculated the CP-corrected value to be $D_{e,CBS}^{CPC} = -14.82$ kcal/mol (using the correct aug-cc-pVDZ CP-corrected binding energy). This value is about 0.5 kcal/mol larger than the $D_{e,CBS}$ value; see also Figure 1b. This rather large difference can be traced to the use of the fully correlated calculation: Extrapolation⁸ of the *frozen core* corrected and uncorrected binding energies result in $D_{e,CBS}(FC) = -14.86$ kcal/mol and $D_{e,CBS}^{CPC}(FC) = -14.72$ kcal/mol. The much smaller difference between these two extrapolated binding energies shows that the CBS procedure works reliably if the basis sets are used as intended.⁷ The average frozen core CBS value $D_{e}^{\infty}(FC) =$

TABLE 1: Calculated Frozen Core and Fully Correlated MP2 Binding Energies of $(formamide)_2$ (kcal/mol), Using the aug-cc-pVXZ (X= D, T, Q) Basis Sets. the Fully Correlated Binding Energies in Parentheses Are Recalculated

	fully correlated		frozen core	
	De	$D_{\rm e}^{ m CPC}$	De	$D_{\rm e}^{\rm CPC}$
aug-cc-pVDZ	-15.80^{a}	$-14.68^{a}(-13.39)^{b}$	-15.598^{b}	-13.388^{b}
aug-cc-pVTZ	-16.83^{a}	-13.98^{a}	-15.362^{b}	-14.109^{b}
aug-cc-pVQZ	-15.37^{a}	-14.49^{a}	-15.073^{b}	-14.482^{b}
CBS limit	$-14.35^{a,c}$	$(-14.82)^{b,c}$	$-14.86^{b,d}$	$-14.72^{b,d}$

^{*a*} Values from ref 1. ^{*b*} This work. ^{*c*} Extrapolation to the complete basis set limit according to ref 7. ^{*d*} Extrapolation to the complete basis set limit according to ref 8.

Figure 1. Complete basis set (CBS) extrapolations of the binding energies D_e (\bullet) and counterpoise-corrected binding energies D_e^{CPC} (\bigcirc) of the most stable isomer of (formamide)₂ using (a) frozen core, this work, and (b) fully correlated MP2 calculations, reported in ref 1. The aug-cc-pVDZ point in (b) labeled by \bigcirc should be corrected to the value \diamondsuit ; see Table 1 and the text. The dashed lines correspond to the CBS limits: (a) frozen core, this work; (b) fully correlated, reported in ref 1.

-14.79 kcal/mol is shown as a dashed line in Figure 1a. This binding energy is 0.51 kcal/mol larger than that reported in ref 1.

References and Notes

(1) Vargas, R.; Garza, J.; Friesner, R. A.; Stern, H.; Hay, B. P.; Dixon, D. A. J. Phys. Chem. A **2001**, 105, 4963.

(2) Watson, T. M.; Hirst, J. D. J. Phys. Chem. 2002, 106, 7858.

(3) Ohtaki, H. J. Mol. Liq. 2003, 103, 3.

(4) Ireta, J.; Neugebauer, J.; Scheffler, M. J. Phys. Chem. A 2004, 108, 5692.

(5) Müller, A.; Losada, M.; Leutwyler, S. J. Phys. Chem. A **2004**, *108*, 157.

(6) Kendall, R. A.; Dunning, T. H., Jr.; Harrison, R. J. J. Chem. Phys. 1992, 96, 6796.
(7) Pataron K. A.; Woon D. F.; Dunning, T. H. J. Chem. Phys. 1994.

(7) Peterson, K. A.; Woon, D. E.; Dunning, T. H. J. Chem. Phys. 1994, 100, 7410.

(8) Klopper, W. J. Chem. Phys. 1995, 102, 6168.